КАК РЕШАТЬ КАКУРО
Игры-головоломки какуро чем-то похожи и на судоку, и на кроссворды. Само название игры - какуро – говорит о многом. Оно происходит от сокращения японского словосочетания kasan kurosu, что означает перекрестное сложение. На Западе эта головоломка известна также под названием cross sums - пересекающиеся суммы.
Как и в упомянутых играх, игровое поле какуро представляет собой набор клеток, которые нужно заполнить по определенным правилам. Как и в судоку, клетки заполняются цифрами от 1 до 9. Как и в кроссворде, клетки «читаются» по горизонтали или вертикали.
Набор идущих подряд по горизонтали или вертикали клеток образует блок. Сумма цифр, входящих в каждый такой блок, записывается в клетке-подсказке. Такая клетка-подсказка для горизонтального блока находится слева от него, а для вертикального - сверху.
В приведенном примере, цифра 5 слева от верхнего горизонтального блока указывают, что сумма цифр в этом блоке должна равняться числу 5. Цифра 4 сверху от левого вертикального блока указывают, что сумма цифр в этом блоке должна равняться числу 4.
Какуро может иметь самые различные геометрические формы, и далеко не всегда они бывают симметричными.
Иногда клетка-подсказка содержит не одну, а две цифры, разделяемые наклонной чертой. Одна из них (первая) относится к вертикальному блоку, а другая (вторая) – к горизонтальному: т.е., в левом столбце этого примера сумма цифр составляет число 5, а в верхней строке – 4.
Еще одно важное правило – в одном блоке не могут находиться одинаковые цифры! Т.е., если сумма блока составляет число 8, то в ее составе не может быть цифры 4, если блок состоит из двух цифр (но только не из трех, т.к. возможна комбинация 4+3+1), а также цифры 2, если блок состоит из четырех цифр (но не из двух или трех). Это правило необходимо учитывать при решении головоломок.
Хотя какуро и является математической игрой, оно является также и игрой логической. Для того чтобы определить цифры, входящие в игровое поле, необходимо не только знать математику (состав числа), но и находить или исключать необходимую цифру путем логических рассуждений. Как правило, сначала, путем логических рассуждений, определяется одна из цифр блока, а уже потом, с помощью знания состава числа, находятся и остальные цифры. Таким образом, эта игра особенно полезна детям: для развития логических и математических способностей.
Рассмотрим следующий пример. Он имеет два способа решения.
Первый способ является самым легким. Обращаем внимание, что в левом столбце с суммой 4 могут быть только две цифры: 1 и 3 (две одинаковые цифры 2, а также цифра 0 исключаются). Где эти цифры могут быть расположены? Ясно, что цифра 3 не может находиться в верхней строке, т.к. сумма этой строки составляет число 3, а комбинация типа 3+0 недопустима. Следовательно, цифру 3 этого столбца нужно поставить в нижнюю строку, а цифру 1 – в верхнюю. (Можно заметить также, хотя это и не очевидно, что цифра 1 этого же столбца не может находиться в нижней строке, т.к. сумма этой строки составляет 7, и тогда она должна будет состоять из цифр 1 и 6, что недопустимо ввиду того, что сумма правого столбца составляет всего лишь 6 и не может быть представлена как 0+6).
Далее легко вычисляются и остальные цифры: в первой строке недостает 2, а во второй – 4.
Второй способ заключается в анализе правого столбца с суммой 6.
Комбинацию 3+3 сразу исключаем, остаются комбинации 5+1 (1+5) и 2+4 (4+2). Рассмотрим сначала комбинацию из чисел 5 и 1. Ясно, что 5 не может стоять в верхней строке (сумма которой равна 3). 5 не может стоять и в нижней строке, т.к. ее сумма 7 указывает в этом случае на то, что в этой строке должна находиться комбинация 2+5, а цифра 2 недопустима в левом столбце ввиду того, что его сумма 4 не может быть выражена комбинацией 2+2. Следовательно, комбинация из чисел 5 и 1 для правого столбца исключается, а при анализе комбинации из чисел 4 и 2 становится ясно, что цифра 4 может стоять только в нижней строке (т.к. сумма верхней строки составляет число 3).
Более сложные какуро решаются аналогично, только нужно быть предельно внимательными и хорошо знать возможный состав чисел-сумм. В заключение – еще один пример.
В нижней строке сумма цифр равна 7. Зная, что в состав числа 7, состоящего из трех цифр, не входит цифра 3 (комбинации типа 3+2+2 или 3+3+1 запрещены), определяем состав правого столбика: 3 в верхней части и 1 – в нижней.
Состав числа 7 для нижней строки будет 4+2+1. Место одной цифры в ней мы уже определили, остается найти местоположение остальных цифр: 2 и 4. Итак, как же они расположены: 4 и 2 или 2 и 4?
Если попробовать первую комбинацию и поставить в первую позицию нижней строки цифру 4, то нам придется поставить в первую позицию верхней строки цифру 3, т.к. сумма левого столбца равна числу 7. Но ставить в верхнюю строку цифру 3 нельзя, т.к. в этой строке такая цифра уже имеется. Следовательно, первая комбинация 4+2 не подходит, и остается использовать вторую комбинацию: 2+4. Остальное – дело техники.
Успехов!